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Abstract

Identifying gene-environment interactions is a central challenge in the quest to understand 

susceptibility to complex, multi-factorial diseases. Developing an understanding of how inter-

individual variability in inherited genetic variation alters the effects of environmental exposures 

will enhance our knowledge of disease mechanisms and improve our ability to predict disease and 

target interventions to high-risk sub-populations. Limited progress has been made identifying 

gene-environment interactions in the epidemiological setting using existing statistical approaches 

for genome-wide searches for interaction. In this paper, we describe a novel two-step approach 
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using omics data to conduct genome-wide searches for gene-environment interactions. Using 

existing genome-wide SNP data from a large Bangladeshi cohort study specifically designed to 

assess the effect of arsenic exposure on health, we evaluated gene-arsenic interactions by first 

conducting genome-wide searches for SNPs that modify the effect of arsenic on molecular 

phenotypes (gene expression and DNA methylation features). Using this set of SNPs showing 

evidence of interaction with arsenic in relation to molecular phenotypes, we then tested SNP-

arsenic interactions in relation to skin lesions, a hallmark characteristic of arsenic toxicity. With 

the emergence of additional omics data in the epidemiologic setting, our approach may have the 

potential to boost power for genome-wide interaction research, enabling the identification of 

interactions that will enhance our understanding of disease etiology and our ability to develop 

interventions targeted at susceptible sub-populations.
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INTRODUCTION

Exposure to arsenic is a serious global public health issue. More than 200 million people 

worldwide, including approximately 77 million in Bangladesh and 17 million in the U.S., 

consume drinking water contaminated with arsenic at levels associated with adverse health 

effects and shortened lifespan (1, 2). Additionally, food-derived inorganic arsenic exposure 

is also an emerging health concern (3–7). Epidemiologic research has established arsenic 

exposure as a risk factor for cancers of the skin, lung, bladder, kidney, liver, and possibly 

prostate (8). Arsenic has also been associated with increased risk of cardiovascular diseases 

(9–11), non-malignant respiratory diseases (12), diabetes mellitus (13–15), and impaired 

cognitive function (16).

Skin is a major target organ of arsenic, with skin lesions a hallmark characteristic of chronic 

exposure and an early manifestation of arsenic toxicity (17). A dose-response relationship 

between arsenic exposure and skin lesions is well-established (18). However, arsenic 

exposure itself fails to fully explain the presence of arsenical skin lesions in exposed 

populations, and inter-individual variability in susceptibility due to inherited genetic 

variation may play an important role in determining risk (19–21). Variation in the 10q24.32 

region (containing arsenic methyltransferase; AS3MT) is associated with arsenic 

metabolism efficiency (22), and these variants show clear additive interaction with arsenic 

exposure in relation to skin lesion risk (23). However, other than 10q24.32, there are no 

other established arsenic susceptibility regions (21).

Identifying gene-environment (GxE) interactions is a central challenge to understand 

susceptibility to complex, multi-factorial diseases (24). Inter-individual variability in the 

effects of environmental exposures may be influenced by inherited genetic variation (25). 

Unfortunately, limited progress has been made identifying GxE interactions in the 

epidemiological setting using genome-wide searches for interaction (26). In the current 

study, we describe novel functional approaches using existing genome-wide genotype, gene 
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expression, and DNA methylation data from a large Bangladeshi cohort study specifically 

designed to assess the effect of arsenic exposure on health. We evaluate gene-arsenic 

interactions by conducting genome-wide searches for genetic variants that modify the effect 

of arsenic on molecular phenotypes and then test SNP-arsenic interactions in relation to skin 

lesion status.

METHODS

Participants

The study sample consists of 5,354 Bangladeshi adults with existing data on arsenic 

exposure (measured in urine), genome-wide SNP genotypes, and clinical phenotype data. 

Among these participants, 3,364 are from the Health Effects of Arsenic Longitudinal Study 

(HEALS) and 1,990 are from the Bangladesh Vitamin E and Selenium Trial (BEST). 

Selected characteristics of the study participants are shown in Table 1. Additional molecular 

data is available for a subset of BEST participants, with array-based genome-wide gene 

expression data on 1,800 participants and array-based epigenome-wide DNA methylation 

data on 400 participants.

HEALS is a prospective cohort study originally consisting of 11,746 men and women from 

Araihazar, Bangladesh, a rural area in which the primary source of drinking water is 

groundwater provided by hand-pumped tube wells. A large proportion of these wells access 

groundwater that is naturally contaminated with elevated levels of inorganic arsenic. 

Participants were recruited between October 2000 and May 2002. HEALS was designed to 

evaluate the long- and short-term effects of arsenic consumed in drinking water and has been 

described extensively elsewhere (27). Demographic data, lifestyle data, and urine and blood 

samples were collected at baseline interviews. The size of the HEALS cohort was increased 

in 2006-2008, with an additional 8,287 participants added.

BEST is a randomized chemoprevention trial of 7,000 participants from Araihazar, Matlab, 

and surrounding areas. All participants have skin lesions associated with arsenic exposure. 

The study was created to evaluate vitamin E and selenium supplementation on non-

melanoma skin cancer risk (28). Participant randomization was initiated in 2006. 

Demographic and lifestyle data and blood samples were collected at baseline.

Informed consent was obtained from all participants. All study procedures were approved by 

the University of Chicago and Columbia University Institutional Review Boards and the 

Ethical Committees of the Bangladesh Medical Research Council and the International 

Center for Diarrhoeal Disease Research, Bangladesh (ICDDR,B).

Genotype data—DNA extraction for genotyping was carried out from the whole blood 

using the QIAamp 96 DNA Blood Kit (cat # 51161) from Qiagen, Valencia, USA. 

Concentration and quality of all extracted DNA were assessed using Nanodrop 1000. 

Samples were processed on Illumina HumanCytoSNP-12 v2.1 chips with 299,140 markers 

and read on the BeadArray Reader. Image data was processed in BeadStudio software to 

generate genotype calls.

Argos et al. Page 3

Mamm Genome. Author manuscript; available in PMC 2019 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quality control was conducted as described previously for 5,499 individuals typed for 

299,140 SNPs (23, 29). We removed DNA samples with call rates <97% (n = 13), gender 

mismatches (n = 79), as well as technical duplicates (n = 53). We removed SNPs that were 

poorly called (<90%) or monomorphic (n = 38,753), and then removed SNPs with call rates 

<95% (n = 1,045) or HWE p-values<10−10 (n = 634, which produces no HWE p-values 

<10−7 in a subset of 1,842 unrelated participants). This QC resulted in 5,354 individuals 

with high-quality genotype data for 257,747 SNPs. The MaCH software (30) was used to 

conduct genotype imputation using 1,000 genomes reference haplotypes (1KG phase3 v5, 

which includes South Asian populations). Only high-quality autosomal imputed SNPs 

(imputation r2>0.5) with MAF>0.01 were included in this analysis, yielding 8,512,165 

imputed SNPs.

Gene Expression Data—Genome-wide mRNA expression data has been generated for a 

subset of 1,799 BEST participants using Illumina’s HumanHT-12-v4 chip (47,231 

transcripts covering 31,335 genes). RNA was extracted from mononuclear cells preserved in 

RLT buffer, stored at −86°C, using Qiagen RNeasy Micro Kit (cat# 74004). Concentration 

and quality of extracted RNA were assessed on Nanodrop 1000. cRNA synthesis was done 

from 250 ng of RNA using Illumina TotalPrep 96 RNA Amplification kit.

DNA Methylation Data—Genome-wide DNA methylation data was generated for a 

subset of 400 BEST participants using Illumina’s HumanMethylation450 BeadChip 

(485,577 CpG-sites, including consensus coding sequences, miRNA promoter regions, and 

disease-related and imprinted genes) (31). Bisulphite conversion of genomic DNA was 

performed using the Zymo’s EZ DNA Methylation Kit. The assay was conducted using 500 

ng of bisulfite-converted DNA per sample. This data has recently been used to identify CpG 

sites at which DNA methylation is associated with arsenic exposure (32).

Arsenic Exposure Data—Urinary total arsenic concentration is a good biomarker of 

aggregate ingested arsenic exposure, and captures exposure from all sources including water, 

food, soil, and dust (33). All study participants have existing urinary total arsenic data 

available, measured from a spot urine sample by graphite furnace atomic absorption 

spectrometry, with a detection limit of 2 μg/L, in a single laboratory (Trace Metals Core 

Facilities Laboratory at Columbia University) (34). Urinary creatinine concentration has also 

been measured in the same laboratory by a colorimetric method based on the Jaffe reaction 

(35). Urinary total arsenic was divided by creatinine to obtain a creatinine-adjusted urinary 

total arsenic concentration, expressed as μg/g creatinine.

Analytical Strategy—The general analysis approach is described in Figure 1. As 

described in detail below, we used a two-step approach in an attempt to 1) identify SNPs that 

modify the effect of arsenic on molecular (“omic”) phenotypes (i.e., gene expression and 

DNA methylation phenotypes, measured genome-wide) and 2) use this set of SNPs to test 

SNP-arsenic interactions in relation to skin lesion status, the classical sign of arsenic 

toxicity.
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Step 1: Identifying SNPs that interact with arsenic to influence molecular “-omic” 
phenotypes

To identify SNPs that interact with arsenic to influence specific genome features (i.e., 

individual transcripts or CpGs), we first identified a set of transcripts and a set of CpG 

methylation sites that show strong evidence of association with arsenic exposure, based on 

Bonferroni (and/or FDR correction). This was done based largely on our previously reported 

results on this topic (32). For each arsenic-associated feature (i.e., CpG or transcript), we 

then conducted a genome-wide search for SNPs that modify the association between arsenic 

and the selected feature. In order to identify SNPs that modify the effect of arsenic on 

multiple features, we conducted principal component analysis (PCA) of the arsenic-

associated features, and derived arsenic-associated PCs representing the impact of arsenic on 

the “biological system” represented by the features. These PCs were then used as outcome 

variables to conduct genome-wide screens for SNPs that modify the effect of arsenic on the 

biological system, as represented by PCs.

We also conducted genome-wide cis-eQTL (expression quantitative trait loci) and cis-

meQTL (methylation QTL) analyses and examined statistical interaction between arsenic 

exposure and the lead cis-SNP in relation to the transcript or CpG affected by the SNP. To 

identify eQTLs and meQTLs, we leveraged results from our recent studies of eQTLs and 

meQTLs in the BEST study (36, 37). At a false-discovery rate (FDR) of 0.01, we observed 

7,643 cis-eQTLs and 84,853 cis-meQTLs. Using the lead SNP for each observed eQTL and 

meQTL, we testing SNP-arsenic interaction in relation to the associated transcript or CpG.

Step 2: Identifying SNPs that interact with arsenic to influence arsenic-related disease

Each SNP identified in step 1 was tested for interaction with arsenic in relation to arsenic-

induced skin lesions, the most common sign of arsenic toxicity. This SNP-arsenic interaction 

analysis was restricted to 503 incident skin lesion cases and 2,493 lesion-free controls from 

HEALS. For each SNP identified in step 1, we also tested the marginal association between 

the SNP and skin lesion status, using data on the combined HEALS and BEST studies 

(2,493 skin lesion cases and 2,861 controls).

Regression Modelling Approach (for both steps)

Our study participants reside in a relatively small geographic area, and some participants are 

related to other participants. Rather than exclude relatives, we use mixed effects models to 

account for relatedness. Such models have been developed for the GWA setting, including 

the software GEMMA. All regression analyses were conducted using the GEMMA software 

package (38). Regression models for detection of GxE include marginal effects for the 

genetic variant (coded as 0, 1, or 2 minor alleles) and for arsenic (log-transformed 

continuous), as well as an interaction term that is the product of these two variables. Arsenic 

exposure was also modeled as an ordinal and a dichotomous variable in supplementary 

analyses, to insure our interactions findings are not affected by mis-modelling the effect of 

the exposure on the outcome. All regression models are adjusted for sex and age 

(continuous). For binary outcomes (step 2), a linear mixed model treating binary outcomes 

as continuous variables was used. To approximate the corresponding odds ratio (OR), the 

beta coefficient was first divided by [x(1 − x)], where x is the proportion of cases in the 
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analysis sample, in order to estimate the beta from a logistic model. This quantity was 

exponentiated to obtain an OR.

GxE analysis of SNPs that are eQTLs in skin

In addition to the two-step analyses described above, we also studied the effects of SNPs 

known to be eQTLs in skin on skin lesion risk. Based on eQTL results from the GTEx 

project (Genotype-Tissue Expression Project) we selected the lead SNP for each eQTL 

observed in sun-unexposed skin (suprapubic) and sun-exposed skin (lower leg). These tissue 

types had 5,491and 8,567 eQTLs reported by GTEx respectively, based on FDR<0.05. After 

combining these two lists, excluding redundant eSNPs, and restricting to SNP with a 

MAF>5% in our population, we were left with 9,952 SNPs that were eSNPs in skin tissue. 

Restricting to these SNPs, we conducted SNP-arsenic interaction analyses in relation to 

incident skin lesions. We modeled urinary arsenic as a continuous exposure (log-

transformed), and ordinal variable based on quartiles, as well as a binary variable defined by 

the median value.

RESULTS

SNP × Arsenic Interaction for Arsenic-associated CpG sites (Step 1)

Based on our prior epigenome-wide association study (EWAS) of arsenic exposure and 

DNA methylation (32), we selected four CpG sites associated with urinary arsenic with 

Bonferroni significance (P<1 × 10−7) (Table 2). In genome-wide searches for SNPs showing 

evidence of interaction with arsenic in relation to these four phenotypes, we identified one 

region (on chromosome 11) showing modest evidence of SNP-arsenic interaction. SNPs in 

this region (lead SNP 11:43330815) showed evidence of interaction with arsenic in relation 

to cg01225779, a CpG on chromosome 5 (Figure 2). For these analyses, arsenic was treated 

as dummy variable with a cut point at the median, due to inflation in the GxE test statistics 

observed when arsenic was treated as a continuous variable.

SNP × Arsenic Interaction for Arsenic-associated DNA Methylation Patterns (Step 1)

Following PCA of these four arsenic-associated CpG sites, we observed that the first PC (PC 

1) was strongly associated with arsenic exposure (r=0.45; P<0.0001) (Figure 3). Using this 

PC as a proxy for “epigenetic response to arsenic”, our genome-wide search for SNPs that 

modify the association of arsenic with this “epigenetic response” variable did not identify 

any SNPs with clear main effects or GxE effects on the constructed PC (Figure 4).

SNP × Arsenic Interaction Analysis for Arsenic-Associated Transcripts (Step 1)

Based on a genome-wide search for association between urinary arsenic and gene expression 

levels, we selected 4,056 arsenic-associated genes (FDR = 0.05). Following PCA of these 

arsenic-associated genes, we identified 45 arsenic-associated PCs that we then used as 

proxies for “transcriptome response to arsenic”. We searched the genome for SNPs that 

modified the association between urinary arsenic and these PCs, and only three of the PCs 

showed a P-value<5×10−8 (Figure 5). The lead SNPs best representing these signals were 

rs17060130 on chromosome 6 and rs12105595 on chromosome 2.

Argos et al. Page 6

Mamm Genome. Author manuscript; available in PMC 2019 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNP × Arsenic Interaction for cis-meQTLs and cis-eQTLs (Step 1)

Among the 7,643 cis-eQTLs identified in this dataset, we tested GxE to determine if arsenic 

modified the association between the lead eSNP and its associated transcript. Among these 

eQTLs, three eSNPs showed P-values surpassing Bonferroni correction (Figure 6). Among 

the 84,853 cis-meQTLs identified in this dataset, none showed strong evidence of interaction 

with urinary arsenic (Figure 6). This null result included the arsenic-associated CpGs, of 

which three of the four had a meQTL (cg06121226 and two others).

Step 2: Testing identified SNPs for interaction with arsenic in relation to skin 
lesion status—Despite the fact that none of our analyses in step 1 provided strong 

evidence for any specific SNP, we selected the six SNPs showing modest evidence of 

association based on step 1 analyses. We then tested each SNP for SNP-arsenic interaction 

in relation to skin lesion case/controls status and for marginal association with skin lesions 

status. In the analyses of interaction (Table 3), none of the SNPs showed a nominally 

significant P-value of interaction (P<0.05). This was true in both models with exposure 

modelled as a continuous variable (log-transformed urinary arsenic) and an ordinal variable 

(urinary arsenic quartiles). Similarly, in analyses of SNPs’ marginal association with skin 

lesion status, no SNP showed evidence of association.

GxE analysis of SNPs that are eQTLs in skin

We tested SNP-arsenic interaction in relation to incident skin lesions for 9,952 SNPs that are 

eQTLs in skin tissue based on results from GTEx. However, none of these analyses 

identified SNPs showing a striking interaction with exposure (Figure 7). When we analyzed 

all SNPs in the genome for evidence of SNP-arsenic interaction in relation to skin lesion 

status, we observe a suggestive signal on chromosome 1, with the lead SNP being an 

intergenic SNP residing between the SNX7 gene and the LPPR5 gene (Figure 8). SNX7 is 

involved in intracellular trafficking, but its exact function is unknown. LPPR5 is involved in 

converting phosphatidic acid to diacylglycerol, glycerolipid synthesis, and receptor-activated 

signal transduction mediated by phospholipase D. Lead SNP rs6659080 is reported as an 

eQTL in only two tissues (according to GTEx); it is associated with LPPR5 expression in 

testicular tissue and SNX7 expression in aorta. However, it should be noted that rs6659080 

is in strong LD with dozens of nearby SNPs (Figure 8).

DISCUSSION

In this paper, we described a two-step omic approach that addresses the limitations of 

standard genome-wide interaction approaches. Using existing genome-wide SNP data from 

a large Bangladeshi cohort study specifically designed to assess the effect of arsenic 

exposure on health, we searched for gene-arsenic interactions by first conducting a genome-

wide search for SNPs that modify the effect of arsenic on molecular phenotypes (gene 

expression and DNA methylation features). Then, using this set of SNPs that interact with 

arsenic in relation to molecular phenotypes, we tested SNP-arsenic interactions in relation to 

skin lesion status, a hallmark characteristic of chronic arsenic toxicity. This approach 

leverages high-quality measures of arsenic exposure and restricts analyses to SNPs with 

enhanced probability of interaction with arsenic (by leveraging existing gene expression and 
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DNA methylation data) to overcome the limitations of standard statistical genome-wide 

interaction approaches.

Evidence has suggested that arsenic exposure itself fails to fully explain the presence of 

arsenical skin lesions in an exposed population and that inter-individual variation may play 

an important role in determining sub-populations at higher risk of developing the disease at 

similarly exposed levels (19). Epidemiologic studies have shown interaction with sex, age, 

body mass index (39), smoking (40), socioeconomic status (41), nutritional status (42), and 

genetic variants (as reviewed in (20, 21)). There is known inter-individual variability in the 

methylation capacity of arsenic (as reviewed in (43)), which has been hypothesized to partly 

explain the variability in susceptibility to arsenic toxicity and may be attributed in part to 

genetic variation in genes known to metabolize arsenic. Thus, individuals who do not fully 

methylate arsenic efficiently could potentially be at increased risk of arsenic-related health 

effects due to this geneenvironment interaction.

GxE interactions are believed to influence complex diseases, but detecting GxE has proven 

difficult. The genome-wide association approach has been successful for identifying new 

susceptibility variants for a wide array of diseases (44). However, variants identified in 

genome-wide association studies typically do not show strong evidence of interaction with 

environmental risk factors (45–50). Explicit searches for GxE (as opposed to detection based 

on marginal effects) may be required to detect interacting variants (51). Limited progress has 

been made identifying GxE interactions in the epidemiological setting using existing 

statistical methods for genome-wide searches for interaction. The genome-wide interaction 

approach suffers from several key limitations, including (1) very large sample size 

requirements due to the conduct of many statistical tests of interaction and (2) a lack of 

high-quality exposure data in studies with large-scale genomic data. Considering these 

limitations, most genome-wide interaction studies that rely on statistical evidence of 

interaction alone are likely to be underpowered to detect GxE interactions.

New approaches for GxE detection are needed that leverage high-quality exposure measures 

(52). Genome-wide interaction studies are typically conducted in the context of large 

genome-wide association consortia studies (53) not designed to assess the impact of specific 

environmental factors. Thus, exposure measures are often questionnaire-based and/or 

retrospective, resulting in measurement error that reduces power for genome-wide 

interaction analyses. Using high-quality, accurate measures of environmental factors with 

established impact on disease in well-characterized populations will enhance power for GxE 

detection (51).

Focusing GxE studies on variants that influence molecular, omics phenotypes through GxE 

can potentially enhance power for GxE detection. Power for genome-wide interaction 

studies is limited because large numbers of tests are conducted. Focusing analyses on a 

smaller set of variants with an increased likelihood of GxE can increase power. In cases 

were transcriptomic or other omics data are available for individuals with exposure data, one 

could conduct a screen for variants that modify the effect of exposure on these molecular 

phenotypes. In other words, variants that interact with exposure to influence disease should 

also influence the cellular/molecular response to exposure.
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We believe there is great promise in shifting the focus of GxE interaction research from 

agnostic genome-wide interaction testing to understanding how genetic variants influence 

humans’ response to an exposure at the molecular level. Our approach leverages omics data 

(gene expression and DNA methylation) to first test for gene-arsenic interactions in relation 

to intermediate molecular phenotypes, with evidence suggesting they represent the 

underlying mechanistic pathways between chronic arsenic exposure and skin lesion 

outcome. The major strength to first evaluating interactions with intermediate molecular 

phenotypes is that power may be enhanced to observe stronger interaction effects for the 

intermediate phenotype since it is more proximal to exposure than the disease outcome. 

Additionally, the environmental measure may better reflect the relevant exposure window for 

the intermediate phenotype as compared to disease outcomes with a longer latency period, 

also increasing ability to observe GxE interactions. However, the objective of this paper was 

not to conduct a direct evaluation of our approach in comparison with other gene-

environment approaches; therefore, additional methodologic evaluations are needed to 

formally compare various statistical approaches.

We acknowledge several limitations of our study. While altered gene expression and DNA 

methylation are associated with our exposure and outcome of interest, there are other 

pathways that underlie the association between chronic arsenic exposure and skin lesion 

status. Therefore, the molecular phenotypes evaluated do not represent the only arsenic 

toxicity pathways. The inclusion of additional intermediate molecular phenotypes (i.e., 

proteome, microbiome, epigenome) may more comprehensively characterize mechanistic 

pathways and improve the first-step selection of promising interaction SNPs based on our 

approach. While previous research has demonstrated significant roles of SNPs on gene 

expression (eQTL) and DNA methylation (meQTL) as well as arsenic exposure on each of 

these molecular phenotypes, it is possible that SNPs and arsenic do not interact with respect 

to these molecular phenotypes. Gene-arsenic interactions may be more apparent for other 

molecular phenotypes. Also, our study was limited to omics phenotypes measured in blood, 

while some disease-relevant GxE may be detectable in multiple tissues, the ideal tissue types 

for detection of GxE will likely be the disease relevant tissues (e.g., skin). We attempted to 

address this limitation by searching for GxE among SNPs known to be eQTLs in skin tissue, 

although no clear interactions were identified.

We evaluated genome-wide SNP-arsenic interactions in step 1 only for those molecular traits 

(differentially methylated CpGs or transcripts) with evidence of marginal/independent 

association with arsenic exposure. We also evaluate SNP-arsenic interactions in step 1 for 

SNPs identified from eQTL and meQTL analyses with evidence of marginal/independent 

association with SNPs. This strategy was employed to reduce the number of multiple 

comparisons, but is based on the assumption that a marginal effect with either the exposure 

or gene must be observed for there to be an interaction effect. This assumption may not hold 

for some GxE interactions.

With the emergence of additional omics data in the epidemiologic setting, our approach may 

have the potential to boost power for genome-wide interaction research, enabling the 

identification of interactions that will enhance our understanding of disease etiology and our 

ability to develop interventions targeted at susceptible sub-populations.
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Figure 1. Analysis approach
A two-stage “GxE-omics” approach for detecting GxE

Argos et al. Page 13

Mamm Genome. Author manuscript; available in PMC 2019 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Genome-wide SNPxArsenic analyses for four arsenic-responsive CpG probes

Argos et al. Page 14

Mamm Genome. Author manuscript; available in PMC 2019 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The distribution of the PC representing epigenomic response to arsenic, stratified by arsenic 

octiles.
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Figure 4. 
Quantile-quantile plots of p-values for the interaction between genome-wide SNPs and a PC 

representing the epigenome response to arsenic.
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Figure 5. 
Genome-wide SNP-arsenic interaction analyses for three selected principle components 

(PCs 51, 64, and 73) representing gene expression patterns.
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Figure 6. 
Quantile-quantile plots of p-value for SNP-arsenic interaction for all observed eQTLs (left) 

and all meQTLs (right). Arsenic was coded as a dummy variable based on the median 

exposure.
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Figure 7. 
Quantile-quantile plots of the p-values for SNP-arsenic interaction in relation to skin lesion 

risk for 9,952 SNPs that are eSNPs in skin tissue.
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Figure 8. 
P-values from a genome-wide study of SNP-arsenic interaction in relation to arsenic-

induced skin lesions. The left panel is a quantile-quantile plot of the –log10(P-values). The 

right panel is a regional association plot centered on top SNP rs6659080 which resides on 

chromosome 1.
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Table 1

Characteristics of genotyped study participants

HEALS BEST BEST subset with gene 
expression data

BEST subset with DNA 
methylation data

N 3364 1990 1799 400

Male (%) 45.1 54.0 55.1 52.8

Age in years, Mean (SD) 37.8 (10.7) 43.4 (10.6) 43.5 (10.6) 43.5 (10.2)

Urinary total arsenic adjusted for 
creatinine in μg/g, Mean (SD)

258.3 (290.8) 351.0 (482.8) 336.7 (437.7) 303.3 (364.9)

Skin lesion case, N (%) 15.0 100.0* 100.0* 100.0*

SD, standard deviation

*
BEST participants all had skin lesions at baseline. These participants were not included in the Step 2 GxE analyses, due to of lack of variation in 

the skin lesion phenotype in that cohort.
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Table 2

CpG sites identified in epigenome-wide association study of creatinine-adjusted urinary total arsenic 

concentration

CpG Gene* Beta P

cg04605617 PLA2G2C 0.054 3.40 × 10−11

cg01225779 SQSTM1 −0.048 2.37 × 10−9

cg06121226 SLC4A4 −0.059 1.16 × 10−8

cg13651690 IGH 0.039 9.16 × 10−8

*
gene assigned based on Illumina’s annotation file
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